
Errata for

C# and Algorithmic Thinking

for the Complete Beginner
Second Edition

5.2 What is a Constant?

Read
priceA, priceB, priceC

Start

vat_A ← priceA * 20 / 100
vat_B ← priceB * 20 / 100
vat_C ← priceC * 20 / 100

Write
vat_A, vat_B, vat_C

End

Figure 5–1 Calculating the 20% VAT for three products without the use of a constant

Read
priceA, priceB, priceC

Start

vat_A ← priceA * vat
vat_B ← priceB * vat
vat_C ← priceC * vat

Write
vat_A, vat_B, vat_C

End

vat ← 20 / 100

Figure 5–2 Calculating the 20% VAT for three products using a variable, vat

Read
priceA, priceB, priceC

Start

vat_A ← priceA * VAT
vat_B ← priceB * VAT
vat_C ← priceC * VAT

Write
vat_A, vat_B, vat_C

End

VAT = 0.20

Figure 5-3 Calculating the 20% VAT for three products using a constant, VAT

5.10 Review Exercises
3. Complete the following table

Value
Data
Type

Declaration and Initialization

The name of my friend String string name = "Mark";

My address string address = "254 Lookout Rd. Wilson, NY 27893";

The average daily temperature

A telephone number string phone_number = "1-891-764-2410";

My Social Security Number (SSN)

The speed of a car

The number of children in a family

Exercice 7.4-1 Which C# Statements are Syntactically Correct?

Which of the following C# assignment statements are syntactically correct?

i. a = −10;

ii. 10 = b;

iii. a_b = a_b + 1;

iv. a = "COWS";

v. a = COWS;

vi. a + b = 40;

vii. a = 3 b;

viii. a = "true";

ix. a = true;

x. a /= 2;

xi. a += 1;

xii. a =* 2;

Solution

i. Correct. It assigns the integer value −10 to variable a.

ii. Wrong. On the left side of the value assignment operator, only variables can exist.

iii. Correct. It increases variable a_b by one.

iv. Correct. It assigns the string (the text) COWS to variable a.

v. Correct. It assigns the content of constant (or even variable) COWS to variable a.

vi. Wrong. On the left side of the value assignment operator, only variables (not expressions) can exist.

vii. Wrong. It should have been written as a = 3 * b.

viii. Correct. It assigns the string true to variable a.

ix. Correct. It assigns the value true to variable a.

x. Correct. This is equivalent to a = a / 2.

xi. Correct. This is equivalent to a = a + 1.

xii. Wrong. It should have been be written as a *= 2 (which is equivalent to a = a * 2).

7.5 Incrementing/Decrementing Operators

The double slashes (//) after the Console.WriteLine() statement indicate that the text that follows is a

comment; thus, it is never executed.

Exercise 14.3-5 Finding the Sum of Digits

Write a C# program that prompts the user to enter a three-digit integer and then calculates the sum of its digits.
Solve this exercise without using the integer remainder (%) operator.

14.6 Review Exercises
3. Write a C# program that prompts the user to enter his or her name and then creates a secret password

consisting of three letters (in lowercase) randomly picked up from his or her name, and a random four-
digit number. For example, if the user enters “Vassilis Bouras” a secret password can probably be one of
“sar1359” or “vbs7281” or “bor1459”. Space characters are not allowed in the secret password.

4. Write a C# program that prompts the user to enter a three-digit integer and then reverses it. For example,
if the user enters the number 375, the number 573 must be displayed. Solve this exercise without using
the integer remainder (%) operator.

15.8 How to Negate Boolean Expressions
However, there is a small detail that you should be careful with. If both AND (&&) and OR (||) operators co-

exist in a complex Boolean expression, then the expressions that use the OR (||) operators in the negated

Boolean expression must be enclosed in parentheses, in order to preserve the initial order of precedence. For
example, if the original Boolean expression is

x >= 5 && x <= 10 || y == 3

20.1 What are Nested Decision Control Structures?

Complex code may lead to invalid results! Try to keep your code as simple as possible by breaking large nested
decision control structures into multiple smaller ones, or by using other types of decision control structures.

Obviously, you can nest any decision control structure inside any other decision control structure as long as you
keep them syntactically and logically correct. In the next example, a case decision structure is nested within a
dual-alternative decision structure.

24.3 Review Questions: True/False
4. The following C# program

static void Main(string[] args) {

 int a, total;

 a = 5;

 total = total + a;

 Console.WriteLine(total);

}

satisfies the property of effectiveness.

25.4 Review Questions: True/False
14. The following C# program

static void Main(string[] args) {

 int i;

 do {

 Console.WriteLine("Hello");

 i++;

 } while (i <= 10);

}

satisfies the property of effectiveness.

25.6 Review Exercises
11. Fill in the gaps in the following code fragments so that all loops perform exactly six iterations.

i. int a = 5;

do {

 a--;

} while (a > ……);

ii. int a = 12;

do {

 a++;

} while (a < ……);

iii. double a = 20;

do {

 a = a + …… ;

} while (a != 23);

iv. int a = 100;

do {

 a -= 20;

} while (a != ……);

v. int a = 2;

do {

 a = 2 * a;

} while (a != ……);

vi. double a = 10;

do {

 a = a + 0.25;

} while (a <= ……);

27.5 Review Exercises

iii. int a;

float b;

for (a = …… ; a >= -15; a -= 2) {

 for (b = 10; b >= 0.5 ; b -= 0.5) {

 Console.WriteLine("Hello Hephaestus");

 }

}

28.3 The “Ultimate” Rule
int positives_given;

double x;

positives_given = 0; //Initialization of positives_given

while (positives_given != 3) { //This is dependent on positives_given

 if (x > 0) {

 positives_given += 1; //Update/alteration of positives_given

 }

}

Exercise 29.2-4 Designing the Flowchart Fragment

a == 1 False

True a == 2

True

False

Read
a

Write
“Nothing

to do”

Write
“The End”

i ← 1

Write
i

i ≤ 9 True

i ← i + 2

i ← 9

Write
i

i ≥ 1 True

i ← i - 2

False

False

Exercise 30.6-2 Rice on a Chessboard

project_30_6_2

static void Main(string[] args) {

 int i;

 ulong grains, total;

 double weight;

 grains = 1;

 total = 1;

 for (i = 2; i <= 64; i++) {

 grains = 2 * grains;

 total = total + grains;

 }

A statement or block of statements

 weight = total / 30000.0;

 Console.WriteLine(total + " " + weight);

}

Exercise 31.2-3 Designing Arrays

Design the necessary arrays to hold the names of ten people as well as the average weight (in pounds) of each person
for January, February, and March. Then add some typical values to the arrays.

Solution

In this exercise, you need a one-dimensional array for names, and a two-dimensional array for people’s weights.

31.6 How to Iterate Through a One-Dimensional Array
Second Approach

This approach is very simple but not as flexible as the previous one. There are cases where it cannot be used, as
you will see below. Following is a code fragment, written in general form

foreach (var element in array_name) {

}

31.7 How to Add User-Entered Values to a One-Dimensional Array
There is nothing new here. Instead of reading a value from the keyboard and assigning that value to a variable,
you can directly assign that value to a specific array element. The next C# program prompts the user to enter the
names of four people, and assigns them to the elements at index positions 0, 1, 2, and 3, of the array names.

31.13 Review Questions: True/False
35. If array b contains 30 elements (arithmetic values), the following code fragment doubles the values of

all of its elements.

for (i = 29; i >= 0; i--) {

 b[i] = b[i] * 2;

}

31.14 Review Questions: Multiple Choice
10. If array b contains 30 elements (arithmetic values), the following code fragment

for (i = 29; i >= 1; i--) {

 b[i] = b[i] * 2;

}

a. doubles the values of some of its elements.

b. doubles the values of all of its elements.

c. none of the above

33.3 Processing Each Column Individually
First Approach – Creating an auxiliary array

s = 0;

for (i = 0; i <= ROWS - 1; i++) {

 s += b[i, j];

 Months

 0 1 2

Names =

John Thompson

Weights =

170 176 173 0

Ava Brown 100 101 99 1

Ryan Miller 130 130 130 2

Emma Moore 260 270 280 3

Alexis Taylor 120 121 122 4

Antony Harris 190 191 190 5

Alexander Lewis 110 115 112 6

Samantha Clark 190 195 193 7

Andrew Scott 200 210 212 8

Chloe Parker 105 109 107 9

process element;

March February January

People

}

total[j] = s;

This program can equivalently be written as

total[j] = 0;

for (i = 0; i <= ROWS - 1; i++) {

 total[j] += b[i, j];

}

Now, nesting this code fragment in a for-loop that iterates for all columns results in the following.

for (j = 0; j <= COLUMNS - 1; j++) {

 total[j] = 0;

 for (i = 0; i <= ROWS - 1; i++) {

 total[j] += b[i, j];

 }

}

Second Approach – Just find it and process it.

This approach uses no auxiliary array; it just calculates and directly processes the sum. The code fragment is as
follows.

for (j = 0; j <= COLUMNS - 1; j++) {

 total = 0;

 for (i = 0; i <= ROWS - 1; i++) {

 total += b[i, j];

 }

}

Accordingly, the following code fragment calculates and displays the average value of each column.

for (j = 0; j <= COLUMNS - 1; j++) {

 total = 0;

 for (i = 0; i <= ROWS - 1; i++) {

 total += b[i, j];

 }

 Console.WriteLine(total / ROWS);

}

Exercice 33.4-1 Finding the Average Value of Two Grades

project_33_4_1

const int STUDENTS = 20;

static void Main(string[] args) {

 int i, total;

 double average;

 string[] names = new string[STUDENTS];

 int[] grades_lesson1 = new int[STUDENTS];

 int[] grades_lesson2 = new int[STUDENTS];

 for (i = 0; i <= STUDENTS - 1; i++) {

 Console.Write("Enter student name No" +(i + 1) + ": ");

 names[i] = Console.ReadLine();

 Console.Write("Enter grade for lesson 1: ");

 grades_lesson1[i] = Int32.Parse(Console.ReadLine());

 Console.Write("Enter grade for lesson 2: ");

 grades_lesson2[i] = Int32.Parse(Console.ReadLine());

 }

 //Calculate the average grade for each student

process total;

 //and display the names of those who are greater than 89

 for (i = 0; i <= STUDENTS - 1; i++) {

 total = grades_lesson1[i] + grades_lesson2[i];

 average = total / 2.0;

 if (average > 89) {

 Console.WriteLine(names[i]);

 }

 }

}

Exercise 34.1-1 Creating an Array that Contains the Average Values of its Neighboring Elements

Write a C# program that lets the user enter 100 positive numerical values into an array. Then, the program must
create a new array of 98 elements. This new array must contain, in each position the average value of the three
elements that exist in the current and the next two positions of the given array.

Solution

Let’s try to understand this exercise through an example using 10 elements.

 0 1 2 3 4 5 6 7 8 9

a = 5 10 9 2 4 12 11 1 0 11

 0 1 2 3 4 5 6 7

new_arr = 8 7 5 6 9 8 4 4

Array new_arr is the new array that is created. In array new_arr, the element at position 0 is the average value of

the elements in the current and the next two positions of array a; that is, (5 + 10 + 9) / 3 = 8. The element at

position 1 is the average value of the elements in the current and the next two positions of array a; that is,

(10 + 9 + 2) / 3 = 7, and so on.

Exercise 34.1-4 Merging Two-Dimensional Arrays

project_34_1_4

const int COLUMNS = 4;

static void Main(string[] args) {

 int i, j;

 int[,] a = {

 {10, 11, 12, 85},

 {3, 1, 5, 10},

 {-1, 2, -5, -10}

 };

 int[,] b = {

 {10, 11, 16, 33},

 {11, 13, 5, 55},

 {-1, -2, -4, 44},

 {55, 33, 77, 12},

 {-110, 120, 132, 43}

 };

 int rows_of_a = a.Length / COLUMNS;

 int rows_of_b = b.Length / COLUMNS;

 //Create array new_arr

 int[,] new_arr = new int[rows_of_a + rows_of_b, COLUMNS];

 for (i = 0; i <= rows_of_a - 1; i++) {

 for (j = 0; j <= COLUMNS - 1; j++) {

 new_arr[i, j] = a[i, j];

 }

 }

 for (i = 0; i <= rows_of_b - 1; i++) {

 for (j = 0; j <= COLUMNS - 1; j++) {

 new_arr[rows_of_a + i, j] = b[i, j];

 }

 }

 //Display array new_arr

 for (i = 0; i <= rows_of_a + rows_of_b - 1; i++) {

 for (j = 0; j <= COLUMNS - 1; j++) {

 Console.Write(new_arr[i, j] + "\t");

 }

 Console.WriteLine();

 }

}

Exercise 34.1-5 Creating Two Arrays – Separating Positive from Negative Values

Note that the arrays pos and neg contain a total number of pos_index and neg_index elements respectively. This

is why the two last loop control structures iterate until variable i reaches values pos_index – 1 and neg_index – 1,

respectively, and not until ELEMENTS – 1, as you may mistakenly expect. Obviously the sum of

pos_index + neg_index equals to ELEMENTS.

Exercise 34.4-7 The Five Best Scorers

Now, in order to sort all rows, you need to nest this code fragment in a for-loop that iterates for all of them, as
shown next.

for (i = 0; i <= TEAMS - 1; i++) {

 swaps = false;

 for (m = 1; m <= PLAYERS - 1; m++) {

 for (n = PLAYERS - 1; n >= m; n--) {

 if (g[i, n] < g[i, n - 1]) {

 temp = g[i, n];

 g[i, n] = g[i, n - 1];

 g[i, n - 1] = temp;

 temp_str = p[i, n];

 p[i, n] = p[i, n - 1];

 p[i, n - 1] = temp_str;

 }

 }

 if (!swaps) break;

 }

}

Exercise 34.4-9 Sorting One-Dimensional Arrays While Preserving the Relationship with a Second

Array

Write a C# program that prompts the user to enter the total number of kWh consumed each month for a period of
one year. It then displays each number of KWh consumed (in descending order) along with the name of the
corresponding month. Use the selection sort algorithm.

36.2 How to Make a Call to a Method
Every call to a method is as follows: you write the name of the method followed by a list of arguments (if
required), either within a statement that assigns the method’s returned value to a variable or directly within an
expression.

Let’s see some examples. The following method accepts an argument (a numeric value) and returns the result of
that value raised to the power of three.

static double cube(double num) {

 double result;

 result = num * num * num;

 return result;

}

 Now, suppose that you want to calculate a result using the following expression

𝑦 = 𝑥3 +
1

𝑥

37.10 Review Questions: True/False
17. Optional arguments must be on the left side of any non-optional arguments.

Exercise 38.1-5 Finding the Average Values of Positive Integers

Note the last single-alternative decision structure, if (count > 0). It is necessary in order for the program to

satisfy the property of definiteness. Think about it! If the user enters a real (float) right from the beginning, the
variable count, in the end, will contain a value of zero.

Exercise 38.2-3 Progressive Rates and Electricity Consumption

The LAV Electricity Company charges subscribers for their electricity consumption according to the following table
(monthly rates for domestic accounts).

Kilowatt-hours (kWh) USD per kWh

kWh ≤ 400 $0.08

401 ≤ kWh ≤ 1500 $0.22

1501 ≤ kWh ≤ 2000 $0.35

2001 ≤ kWh $0.50

39.9 Review Exercises
10. During the Cold War after World War II, messages were encrypted so that if the enemies intercepted

them, they could not decrypt them without the decryption key. A very simple encryption algorithm is
alphabetic rotation. The algorithm moves all letters N steps "up" in the alphabet, where N is the
encryption key. For example, if the encryption key is 2, you can encrypt a message by replacing the letter
A with the letter C, the letter B with the letter D, the letter C with the letter E, and so on. Do the following:

i. Write a class named EncryptDecrypt that includes

a. private integer field named _encr_decr_key.

b. a property named Encr_decr_key. It will be used to get and set the value of the field

_encr_decr_key. The getter must throw an error when the field has not yet been set, and

the setter must throw an error when the field is not set to a value between 1 and 26.

